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Recent measurements of the branching fraction forDs → ℓν disagree with the Standard Model

expectation, which relies on calculations offDs from lattice QCD. This paper uses recent prelim-

inary measurements from CLEO and a new preliminary lattice-QCD result from this conference

to update the significance of the discrepancy. The “fDs puzzle” stands now at 3.5σ , with σ pre-

dominantly from the statistical uncertainty of the experiments. New physics scenarios that could

solve the puzzle would also lead to non-Standard amplitudesmediating the semileptonic decays
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where lattice QCD calculations are needed to confront recent and forthcoming measurements.
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1. Introduction

Recent years have witnessed significant improvements in charmed-meson leptonic and semilep-
tonic decays, both in experimental measurements and in calculations of the hadronic transition am-
plitudes with lattice QCD. A puzzle has arisen, namely a discrepancy of approximately 3.5σ in the
rate of the leptonic decayDs→ ℓν , whereℓ is a muon orτ lepton [1]. If the measured counts have
not fluctuated high, and the lattice QCD calculations are confirmed (by further calculations with
2+1 flavors of sea quarks), then this may be a signal of physicsbeyond the Standard Model [2].

If non-Standard interactions mediatecs̄→ ν ℓ̄, then they also alter, at some level, the rate and
q2-distribution ofD→ Kµν . (D→Kτν is kinematically forbidden.) In this paper, section 2 recalls
the origin of the leptonic discrepancy, incorporating new,preliminary results. Section 3 updates the
new-physics analysis of Ref. [2] and extends it to encompasssemileptonic decays. Then section 4
discusses the phenomenology of semileptonic decays in the context of new physics. For lattice
QCD the main conclusion, discussed in section 5, is that precise calculations of the semileptonic
form factors, including a tensor form factor defined below, are vital.

2. Leptonic Decays

In the Standard Model the partial width forDs → ℓνℓ is

Γ(Ds → ℓνℓ) =
mDs

8π
f 2
Ds
|GFV∗

csmℓ|2
(

1−m2
ℓ/m2

Ds

)2
, (2.1)

where the decay constantfDs is defined by〈0|s̄γµγ5c|Ds(p)〉 = i fDs p
µ , and is also computed via

(mc+ms)〈0|s̄γ5c|Ds(p)〉=−i fDsm
2
Ds

; PCAC ensures that the two definitions are the same. The par-
tial widths are small: for muonic decays owing to the helicity-suppression factorm2

µ ; for τ-leptonic
decays owing to the phase-space factor(1−m2

τ/m2
Ds

)2. Experiments measure the branching frac-
tion B = ΓτDs but usually quotefDs assuming that no non-Standard amplitude contributes toΓ.

In this sense,fDs has been measured recently by the BaBar [3], Belle [4], and CLEO [5, 6] Col-
laborations. The experiments measureB(Ds → ℓν) directly, without complicated modeling of the
events or background, and the experimental errors are principally statistical. Radiative corrections
are at most 1–2%, and the discrepancy cannot be explained with any value of|Vcs| consistent with
a unitaryn× n CKM matrix [2]. In summary, it seems sound to take the experimental measure-
ments of fDs at face value, yielding Table 1. Treating both statistical and systematic uncertainties
in quadrature, the average of the measurements in Table 1 is

fDs|expt avg= 272±8 MeV (2.2)

combiningµν andτν and including new results reported by CLEO at conferences through Septem-
ber 2008 [7]. Separate averages for the two final states are inTable 1.

Now let us turn to lattice QCD calculations offDs. There are two calculations with 2+1 flavors
of sea quarks, the first from the Fermilab Lattice and MILC Collaborations [8] and more recently
from the HPQCD Collaboration [9]. These are

fDs|HPQCD= 241±3 MeV, fDs|Fermilab-MILC = 249±11 MeV, (2.3)

where the Fermilab-MILC result is an update presented at this conference by Mackenzie [10]. Both
calculations use the improved staggered Asqtad action for the sea quarks, taking advantage of the
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Table 1: Recent experimental values offDs. The preliminary update from CLEO can be found in Ref. [7].

final state reference fDs (MeV)
end 2007 2008 update

µν BaBar [3] 283±17±16
µν CLEO [5] 264±15± 7 265.4±11.9±4.4
µν Belle [4] 275±16±12
τν (τ → πν) CLEO [5] 310±25± 8 271±20±4
τν (τ → eνν̄) CLEO [6] 273±16± 8
µν our average 273±11 271±10
τν our average 285±15 272±13

freely available MILC ensembles [11]. In the following, I use the average of the two results in
Eq. (2.3) with no correlation, because the dominant systematic errors differ.

The experimental average offDs lies 12.5% above that of lattice QCD, and the significance of
the discrepancy is

3.5σ = 2.9σ ⊕2.2σ , (2.4)

where the two entries on the right-hand side are forµν and τν separately. Before the update
from CLEO [7] the discrepancy was 3.8σ = 2.7σ ⊕2.9σ [2]. Reference [1] omits BaBar’s result
and reports 3.4σ , and with CLEO’s update this approach yields 3.2σ . One should bear in mind
that the yardstick forσ is the experimentalstatisticalerror: Were one to double HPQCD’s error
(without justification), the total discrepancy would remain 3.0σ . Indeed, the same methods agree
with experiment forfπ , fK , charmonium mass splittings, and especiallymDs, mD+, and fD+ [9, 12].

3. New Physics

If the discrepancy cannot be traced to a fluctuation or error in either the measurements or the
calculation(s), then one should turn to non-Standard physics as an explanation. The new particles
must be heavy to have escaped direct detection, so one may consider an effective Lagrangian

Leff = M−2Cℓ
A(s̄γµγ5c)(ν̄ℓLγµℓL)+M−2Cℓ

P(s̄γ5c)(ν̄ℓLℓR)−M−2Cℓ
V(s̄γµc)(ν̄ℓLγµℓL)

+ M−2Cℓ
S(s̄c)(ν̄ℓLℓR)+M−2Cℓ

T(s̄σ µνc)(ν̄ℓLσµνℓR)+H.c., (3.1)

whereM is a high mass scale. ThisLeff extends the effective Lagrangian of Ref. [2] to include
interactions that mediateD → Kℓν . The experiments do not identify the neutrino flavor or helicity,
but Eq. (3.1) assumes̄νℓL to be of lepton flavorℓ and omits right-handed neutrinos. In this way
the resulting non-Standard amplitudes can interfere with the StandardW-mediated amplitude and
explain the sought-after effect of 10–15% (in the amplitude).

These effective interactions change the rate for leptonic decay, by substituting in Eq. (2.1)

GFV∗
csmℓ → GFV∗

csmℓ +
Cℓ

A√
2M2

mℓ +
Cℓ

P√
2M2

m2
Ds

mc +ms
. (3.2)

Because (conventionally)Vcs is real, one sees that one or both ofCℓ
A, Cℓ

P must have a positive real
part. If only one of these reduces the discrepancy to 1σ , one can derive the bounds
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M(ReCℓ
A)−1/2 . 855 GeV, M(ReCℓ

P)−1/2 . 1070 GeV
√

mτ/mℓ, (3.3)

updating Ref. [2] to reflect CLEO’s new preliminary measurements and treating theµν and τν
discrepancies as a single effect.

The effective Lagrangian can arise from the tree-level exchange of non-Standard particles, in
which caseM is simply the new particle’s mass. Reference [2] found a few possibilities. One
is thes-channel annihilation through a charged Higgs boson, in a new model designed so that the
Yukawa couplings satisfyys≪ yc andyc,yτ ∼ 1. But this model also hasyd < ys, thereby predicting
a 10–15% deviation in the amplitude forD+ → ℓ+ν . This is now disfavored, because CLEO’s new
measurement offD+ [13] agrees perfectly with lattice QCD [8, 9, 10]. Another candidate is the
t-channel exchange of a charge+2

3 leptoquark, which can arise in various ways, all of which
are disfavored by non-observation ofτ → µss̄. The most promising mechanism is theu-channel
exchange of an SU(2)-singlet, charge−1

3 leptoquark, namely a particle with the quantum numbers
as a down-type scalar quark̃d in supersymmetric models. It couples via theR-violating Lagrangian

LLQ = κ2ℓ (c̄Lℓ
c
L − s̄Lνc

ℓL) d̃+ κ ′
2ℓ c̄Rℓc

Rd̃+H.c., (3.4)

where the superscriptc denotes charge conjugation, andκ2ℓ andκ ′
2ℓ are complex parameters (in

general, entries of Yukawa matrices). WhenM = md̃ ≫ mDs one can deriveLeff with

Cℓ
A = Cℓ

V = 1
4|κ2ℓ|2, Cℓ

P = Cℓ
S = 1

4κ2ℓκ ′∗
2ℓ = −2Cℓ

T . (3.5)

If κ2ℓ is independent ofℓ and eitherκ ′
2ℓ ∝ mℓ or |κ ′

2ℓ/κ2ℓ| ≪ mℓmc/m2
Ds

, then these interactions
could explain why the discrepancy appears in bothµν and τν channels. Generalizations of
Eq. (3.4) appear in non-Standard models that modify the interference phase ofB0

s-B̄0
s [14], ex-

plain quark masses [15], induce deviations inB+
(c) → ℓν [16], generate neutrino masses [17], or

enhance rareD decays [18].

4. Semileptonic Decays

To obtain further information about a possible non-Standard cause of the effective ¯scν̄ℓ vertex,
one can turn to other processes. One would be the production charmed quarks in neutrino scattering
off strange sea quarks in nucleons. Another set consists of the semileptonic decaysD0 →K−µ+νµ ,
D+ → K̄0µ+νµ , and their charge conjugates. A full understanding of thesedecays will require
lattice QCD calculations of the hadronic transition.

Let us start by reviewing the kinematics of three-body decays. Let theD-meson, kaon, lepton,
and neutrino 4-momenta be denotedp, k, ℓ, andν . There are two Lorentz independent invariants,
which may be taken to beEℓ = p· ℓ/mD andEK = p·k/mD, namely the lepton and kaon energies
in theD meson’s rest frame. Often instead ofEK the mass-squared of the leptonic system is used,
q2 = m2

D + m2
K −2mDEK, q = ℓ+ ν = p− k. For brevity the formulae given below use bothEK

andq2. The kinematically allowed region is shown in the Dalitz plot, Fig. 1. The discussion given
below is somewhat simpler with the variable

Eℓ⊥ =
p· ℓ
mD

− p·qq· ℓ
mDq2 = Eℓ− 1

2(mD −EK)
(

1+m2
ℓ/q2) , (4.1)
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and the allowed region, for fixedEK is −Emax
ℓ⊥ ≤ Eℓ⊥ ≤ Emax

ℓ⊥ , Emax
ℓ⊥ = 1

2(1−m2
ℓ/q2)

√

E2
K −m2

K.

The allowed region forEK is mK ≤ EK ≤ (m2
D +m2

K −m2
ℓ)/2mD, or m2

ℓ ≤ q2 ≤ (mD −mK)2.
The doubly-differential rate forD → Kℓν is

d2Γ
dEK dEℓ⊥

=
mD

(2π)3

{

[(

E2
K −m2

K

)(

1−m2
ℓ/q2)−4E2

ℓ⊥
]∣

∣GFV∗
cs+Gℓ

V

∣

∣

2 ∣

∣ f+(q2)
∣

∣

2

+
q2−m2

ℓ

4m2
D

∣

∣

∣

∣

mℓ

(

GFV∗
cs+Gℓ

V

) m2
D −m2

K

q2 +Gℓ
S
m2

D −m2
K

mc−ms

∣

∣

∣

∣

2
∣

∣ f0(q
2)

∣

∣

2

+

[

m2
ℓ

4m2
D

(

E2
K −m2

K

)(

1−m2
ℓ/q2)+

4q2

m2
D

E2
ℓ⊥

]

∣

∣Gℓ
T

∣

∣

2 ∣

∣ f2(q
2)

∣

∣

2
(4.2)

− 2mℓ

mD

(

E2
K −m2

K

)(

1−m2
ℓ/q2)Re

[(

GFV∗
cs+Gℓ

V

)

Gℓ∗
T f+(q2) f ∗2 (q2)

]

− 2mℓ

mD
Eℓ⊥Re

[(

mℓ

(

GFV∗
cs+Gℓ

V

) m2
D −m2

K

q2 +Gℓ
S
m2

D −m2
K

mc−ms

)

×
(

GFVcs+Gℓ∗
V

)

f0(q
2) f ∗+(q2)

]

+
2q2

m2
D

Eℓ⊥Re

[(

mℓ

(

GFV∗
cs+Gℓ

V

) m2
D −m2

K

q2 +Gℓ
S
m2

D −m2
K

mc−ms

)

Gℓ∗
T f0(q

2) f ∗2 (q2)

]}

,

whereGℓ
V,S,T = Cℓ

V,S,T/
√

2M2, and the form factorsf+, f0, and f2 are defined via

〈K(k)|s̄γµc|D(p)〉 =

(

pµ +kµ − m2
D −m2

K

q2 qµ
)

f+(q2)+
m2

D −m2
K

q2 qµ f0(q
2), (4.3)

〈K(k)|s̄σ µνc|D(p)〉 = im−1
D (pµkν − pνkµ) f2(q

2), (4.4)

〈K(k)|s̄c|D(p)〉 =
m2

D −m2
K

mc−ms
f0(q

2), (4.5)

and f0 appears for both the vector and scalar currents owing to CVC.Integrating over lepton energy

dΓ
dEK

=
mD

(2π)3

√

E2
K −m2

K

(

1− m2
ℓ

q2

)2{

(E2
K −m2

K)
2q2 +m2

ℓ

3q2

∣

∣GFV∗
cs+Gℓ

V

∣

∣

2 ∣

∣ f+(q2)
∣

∣

2

+
q2

4m2
D

∣

∣

∣

∣

mℓ

(

GFV∗
cs+Gℓ

V

) m2
D −m2

K

q2 +Gℓ
S
m2

D −m2
K

mc−ms

∣

∣

∣

∣

2
∣

∣ f0(q
2)

∣

∣

2
(4.6)

+ (E2
K −m2

K)
q2 +2m2

ℓ

3m2
D

∣

∣Gℓ
T

∣

∣

2 ∣

∣ f2(q
2)

∣

∣

2

− 2
mℓ

mD
(E2

K −m2
K)Re

[(

GFV∗
cs+Gℓ

V

)

Gℓ∗
T f+(q2) f ∗2 (q2)

]

}

.

Note that two terms with interference between form factors vanish after integration: the vari-
ableEℓ⊥ renders this feature especially transparent. We shall use these formulae to diagnose how
new interactions mediatingDs→ ℓν would alter the semileptonic rate and differential distributions.

In many non-Standard models, including those with the charge −1
3 leptoquarkd̃, one finds

Cℓ
V = Cℓ

A andCℓ
S = Cℓ

P (cf. Eq. (3.5)). If thefDs puzzle is solved by theCℓ
A interaction, then theCℓ

V

interaction generates a similarly large enhancement in thesemileptonic rate. This consequence is
easily seen from the| f+|2 contribution to the rate: the other Standard contribution,with | f0|2, is

5



Non-Standard̄scν̄ℓ Andreas S. Kronfeld

suppressed by(mℓ/mD)2, which is 3×10−3 (7×10−8) for µ (e). On the other hand, if thefDs puz-
zle is solved by theCℓ

P interaction, then it will be difficult to observe the companion semileptonic
contribution. To enhance bothDs → τν andDs → µν , some mechanism should lead toCℓ

P ∝ mℓ,
and then (in the leptoquark example)Cℓ

S ∝ mℓ, Cℓ
T ∝ mℓ also. In that case, the non-Standard contri-

butions are small corrections to a suppressed contribution.
The doubly-differential rate suggests a challenging way toobserve the effects of non-vanishing

Cℓ
S andCℓ

T . In the asymmetry

A⊥ =
Γ(Eℓ⊥ > 0)−Γ(Eℓ⊥ < 0)

Γ(Eℓ⊥ > 0)+ Γ(Eℓ⊥ < 0)
=

N(Eℓ⊥ > 0)−N(Eℓ⊥ < 0)

N(Eℓ⊥ > 0)+N(Eℓ⊥ < 0)
(4.7)

everything but the last two lines of Eq. (4.2) cancels. To obtain a 7% measurement ofA⊥, one
would need around 107 semimuonic events in each half of the modified Dalitz plane. One can
generalize this asymmetry to any region in theEK-Eℓ⊥ plane that is symmetric aboutEℓ⊥ = 0, or to
any moment of the distribution odd inEℓ⊥. For example, when the kaon momentum is low, phase
space naturally suppresses the| f+|2 contribution, perhaps helpfully.

5. Conclusions

From Eqs. (4.2) and (4.6) one sees that the first concern of future lattice calculations is to
improve on the 7% uncertainty of the only 2+1 flavor calculation of f+(q2) [19]. With current
semielectronic measurements [20, 21], one could test for new contributions to the ¯scν̄eevertex (for
which there is not yet any evidence). Semimuonic measurements are needed for a direct test of the
fDs puzzle. Once the event yields become high enough to measureA⊥, it will be necessary to have
accurate calculations of the scalar and tensor form factors, f0 and f2. CLEO and theB factories
have somewhat more data to analyze, and BES-III should record thousands of events [22].
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A. All Semileptonic Formulas

To treat the SM and NP efficiently, we shall now write the effective Lagrangian as

Leff = M−2C̄ℓ
A(s̄γµγ5c)(ν̄LγµℓL)−M−2C̄ℓ

V(s̄γµc)(ν̄LγµℓL)+M−2Cℓ
P(s̄γ5c)(ν̄LℓR)

+ M−2Cℓ
S(s̄c)(ν̄LℓR)+M−2Cℓ

T(s̄σ µνc)(ν̄LσµνℓR)+H.c., (A.1)

where

C̄ℓ
V,A =

√
2M2GFV∗

cs+Cℓ
V,A,

C̄ℓ
V,A√
2M2

= GFV∗
cs+

Cℓ
V,A√
2M2

. (A.2)

This Leff mediatesD → Kℓν . (By analogy, one can extend this to the semileptonic decay of any
pseudoscalar meson.) Let theD-meson, kaon, lepton, and neutrino 4-momenta be denotedp, k, ℓ,
andν , as above. The amplitude is

〈ℓνK|iLeff|D〉 = iM−2ū(ν)1
2(1+ γ5)

[

Cℓ
S〈K|s̄c|D〉 − C̄ℓ

Vγµ〈K|s̄γµc|D〉 (A.3)

+ Cℓ
Tσµν〈K|s̄σ µνc|D〉

]

v(ℓ).

The hadronic matrix elements are re-expressed as form factors in Eqs. (4.3)–(4.4). For the leptons
we require the spinor combinations

ū(ν)1
2(1+ γ5)(p/+k/)⊥v(ℓ) = 2ū(ν)p/⊥

1
2(1− γ5)v(ℓ), (A.4)

ū(ν)1
2(1+ γ5)q/v(ℓ) = −mℓū(ν)1

2(1+ γ5)v(ℓ), (A.5)

(pµkν − pνkµ)ū(ν)1
2(1+ γ5)iσµνv(ℓ) = −2ū(ν)p/⊥q/1

2(1+ γ5)v(ℓ), (A.6)

where for any four-vectorr, rµ
⊥ = rµ − (r ·q/q2)qµ . Inserting Eqs. (4.3)–(4.4) and (A.4)–(A.6) into

Eq. (A.3),

〈ℓνK|iLeff|D〉 = iM−2
{(

mℓC̄
ℓ
V

m2
D −m2

K

q2 +Cℓ
S
m2

D −m2
K

mc−ms

)

ū(ν)1
2(1+ γ5)v(ℓ) f0(q

2) (A.7)

− 2C̄ℓ
V ū(ν)p/⊥

1
2(1− γ5)v(ℓ) f+(q2)−2Cℓ

Tm−1
D ū(ν)p/⊥q/1

2(1+ γ5)v(ℓ) f2(q
2)

}

.

The differential rate is (see PDG)

d2Γ
dEK dEℓ

=
1

(2π)3

1
8mD

∑
spins

|〈ℓνK|iLeff|D〉|2, (A.8)

whereEK = p·k/mD andEℓ = p· ℓ/mD are the energies of the kaon and lepton in the rest frame of
theD meson. To sum over lepton and neutrino polarization states,we need

∑
spins

ū(ν)1
2(1+ γ5)v(ℓ)v̄(ℓ)1

2(1− γ5)u(ν) = 2ν · ℓ = q2−m2
ℓ , (A.9)

∑
spins

ū(ν)p/⊥
1
2(1− γ5)v(ℓ)v̄(ℓ)1

2(1+ γ5)p/⊥u(ν) = −p2
⊥(q2−m2

ℓ)− (2p⊥ · ℓ)2, (A.10)

∑
spins

ū(ν)p/⊥q/1
2(1+ γ5)v(ℓ)v̄(ℓ)1

2(1− γ5)q/p/⊥u(ν) = q2(2p⊥ · ℓ)2−m2
ℓ p2

⊥(q2−m2
ℓ), (A.11)
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∑
spins

ū(ν)1
2(1+ γ5)v(ℓ)v̄(ℓ)1

2(1+ γ5)p/⊥u(ν) = 2mℓp⊥ · ℓ, (A.12)

∑
spins

ū(ν)1
2(1+ γ5)v(ℓ)v̄(ℓ)1

2(1− γ5)q/p/⊥u(ν) = −2q2p⊥ · ℓ, (A.13)

∑
spins

ū(ν)p/⊥
1
2(1− γ5)v(ℓ)v̄(ℓ)1

2(1− γ5)q/p/⊥u(ν) = mℓp2
⊥(q2−m2

ℓ), (A.14)

in which p2
⊥ = −(E2

K −m2
K)m2

D/q2. Note thatE2
K −m2

K is nothing but the kaon’s squared three-
momentum in theD-meson rest frame. It is convenient to change from the variable Eℓ to Eℓ⊥ =

p⊥ · ℓ/mD, defined in the text. With this variable, it is easy to see which contributions vanish after
integrating over lepton energy.

The doubly-differential rate is then

d2Γ
dEK dEℓ⊥

=
1

(2π)3

mD

2M4

{[

(E2
K −m2

K)
q2−m2

ℓ

q2 −4E2
ℓ⊥

]

∣

∣C̄ℓ
V

∣

∣

2 | f+(q2)|2

+
q2−m2

ℓ

4m2
D

∣

∣

∣

∣

mℓC̄
ℓ
V

m2
D −m2

K

q2 +Cℓ
S
m2

D −m2
K

mc−ms

∣

∣

∣

∣

2

| f0(q2)|2

+

[

m2
ℓ

m2
D

(E2
K −m2

K)
q2−m2

ℓ

q2 +
4q2

m2
D

E2
ℓ⊥

]

∣

∣Cℓ
T

∣

∣

2 | f2(q2)|2 (A.15)

− 2mℓ

mD
(E2

K −m2
K)

q2−m2
ℓ

q2 Re
[

C̄ℓ
VCℓ

T
∗

f+(q2) f ∗2 (q2)
]

− 2mℓ

mD
Eℓ⊥Re

[(

mℓC̄
ℓ
V

m2
D −m2

K

q2 +Cℓ
S
m2

D −m2
K

mc−ms

)

C̄ℓ∗
V f0(q

2) f ∗+(q2)

]

+
2q2

m2
D

Eℓ⊥Re

[(

mℓC̄
ℓ
V

m2
D −m2

K

q2 +Cℓ
S
m2

D −m2
K

mc−ms

)

Cℓ
T
∗

f0(q
2) f ∗2 (q2)

]}

.

The singly-differential rate is

dΓ
dEK

=
1

(2π)3

mD

2M4

√

E2
K −m2

K

(

1− m2
ℓ

q2

)2{

(E2
K −m2

K)
2q2 +m2

ℓ

3q2

∣

∣C̄ℓ
V

∣

∣

2 | f+(q2)|2

+
q2

4m2
D

∣

∣

∣

∣

mℓC̄
ℓ
V

m2
D −m2

K

q2 +Cℓ
S
m2

D −m2
K

mc−ms

∣

∣

∣

∣

2

| f0(q2)|2 (A.16)

+ (E2
K −m2

K)
q2 +2m2

ℓ

3m2
D

∣

∣Cℓ
T

∣

∣

2 | f2(q2)|2− 2mℓ

mD
(E2

K −m2
K)Re

[

C̄ℓ
VCℓ

T
∗

f+(q2) f ∗2 (q2)
]

}

=
mD

(2π)3

√

E2
K −m2

K

(

1− m2
ℓ

q2

)2
{

(E2
K −m2

K)
2q2 +m2

ℓ

3q2

∣

∣

∣

∣

GFV∗
cs+

Cℓ
V√

2M2

∣

∣

∣

∣

2

| f+(q2)|2

+
q2

4m2
D

∣

∣

∣

∣

mℓ

(

GFV∗
cs+

Cℓ
V√

2M2

)

m2
D −m2

K

q2 +
Cℓ

S√
2M2

m2
D −m2

K

mc−ms

∣

∣

∣

∣

2

| f0(q2)|2

+ (E2
K −m2

K)
q2 +2m2

ℓ

3m2
D

∣

∣

∣

∣

Cℓ
T√

2M2

∣

∣

∣

∣

2

| f2(q2)|2 (A.17)

− 2
mℓ

mD
(E2

K −m2
K)Re

[

(

GFV∗
cs+

Cℓ
V√

2M2

)

Cℓ
T
∗

√
2M2

f+(q2) f ∗2 (q2)

]}

.
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